Diversified CRISPR-Cas Mutagenesis Toolbox for Large DNA Insertions
Grace Fuller, Daniel B. Sulis, Carlos Cofre, Jack Wang, Rodolphe Barrangou
contact: mafuller@ncsu.edu
linkedin: https://www.linkedin.com/in/mary-gracen-fuller/
Literature Cited
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019.
Chavez, C.L., and Calos, M.P. (2011). Therapeutic applications of the PhiC31 inte- grase system. Curr. Gene Ther. 11, 375–381.
Chen, X., Du, J., Yun, S., Xue, C., Yao, Y., & Rao, S. (2024). Recent advances in CRISPR/Cas-based genome insertion technologies. Molecular Therapy-Nucleic Acids.
Cody, J. P., Graham, N. D., Zhao, C., Swyers, N. C., & Birchler, J. A. (2020). Site‐specific recombinase genome engineering toolkit in maize. Plant Direct, 4(3), e00209.
Cumbie, W. P., Huber, D. A., Steel, V. C., Rottmann, W., Cannistra, C., Pearson, L., & Cunningham, M. (2020). Marker associations for fusiform rust resistance in a clonal population of loblolly pine (Pinus taeda, L.). Tree Genetics & Genomes, 16(6), 86.
Gilbertson, L. (2003). Cre–lox recombination: Cre-ative tools for plant biotechnology. TRENDS in Biotechnology, 21(12), 550-555.
Held, P.K., Olivares, E.C., Aguilar, C.P., Finegold, M., Calos, M.P., and Grompe, M. (2005). In vivo correction of murine hereditary tyrosinemia type I by phiC31 inte- grase-mediated gene delivery. Mol. Ther. 11, 399–408.
Olivares, E.C., Hollis, R.P., Chalberg, T.W., Meuse, L., Kay, M.A., and Calos, M.P. (2002). Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol. 20, 1124–1128.
Pandey, S., Gao, X. D., Krasnow, N. A., McElroy, A., Tao, Y. A., Duby, J. E., … & Liu, D. R. (2024). Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nature Biomedical Engineering, 1-18.
Roberts, A., Nethery, M. A., & Barrangou, R. (2022). Functional characterization of diverse type IF CRISPR-associated transposons. Nucleic acids research, 50(20), 11670-11681
Sulis, D. B., Jiang, X., Yang, C., Marques, B. M., Matthews, M. L., Miller, Z., … & Wang, J. P. (2023). Multiplex CRISPR editing of wood for sustainable fiber production. Science, 381(6654), 216-221.
Sun, C., Lei, Y., Li, B., Gao, Q., Li, Y., Cao, W., … & Gao, C. (2024). Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nature Biotechnology, 42(2), 316-327.
Yarnall, M. T., Ioannidi, E. I., Schmitt-Ulms, C., Krajeski, R. N., Lim, J., Villiger, L., … & Gootenberg, J. S. (2023). Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology, 41(4), 500-512.
Ye, L., Chang, J.C., Lin, C., Qi, Z., Yu, J., and Kan, Y.W. (2010). Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proc. Natl. Acad. Sci. USA 107, 19467–19472.
Xing, S., Chen, K., Zhu, H., Zhang, R., Zhang, H., Li, B., & Gao, C. (2020). Fine-tuning sugar content in strawberry. Genome Biology, 21, 1-14.
Zhou, J., Liu, G., Zhao, Y., Zhang, R., Tang, X., Li, L., … & Zhang, Y. (2023). An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nature Plants, 9(4), 588-604.
Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., … & Gao, C. (2022). An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 40(9), 1394-1402.